티스토리 뷰
•What is the appropriate and differentiable norm when given data points with outliers? (median is not differentiable)
•How do you define outliers? What is the probabilistic meaning of outliers?
첫 번째 질문의 답이 p-norm with high p였던 거 같아서 p-norm, 2-norm, frobenius norm을 찾아보다가 svd, eigenvalue decomposition을 찾아보다 왜 p-norm with high p인 지 아직도 이해를 못함.
일단 induced norm 인가 schatten norm인 지 모르겠음.
https://chrischoy.github.io/research/matrix-norms/#:~:text=In%20another%20word%2C%20matrix%20p,for%20a%20unit%20vector%20e.&text=Largest%20singular%20value%20of%20a,not%20necessarily%20the%20largest%20norm.
일단 svd를 철저히 이해하면 어떻게든 되려나
https://math.stackexchange.com/questions/320220/intuitively-what-is-the-difference-between-eigendecomposition-and-singular-valu
SVD in Machine Learning: Underdetermined Least Squares
https://towardsdatascience.com/underdetermined-least-squares-feea1ac16a9
Steve Brunton
https://www.youtube.com/watch?v=PjeOmOz9jSY
PCA and rigid transformation
https://towardsdatascience.com/principal-component-analysis-pca-8133b02f11bd
이 포스트 나중에 정리해야지. 일단 덤프
'Research (연구 관련)' 카테고리의 다른 글
Laplacian Smoothing / GraphCNN (0) | 2024.03.04 |
---|---|
What are covariance and correlation? (0) | 2024.03.01 |
R1 regularization (0) | 2024.02.27 |
Image Processing II (0) | 2024.02.27 |
Lambertian reflection (0) | 2024.02.23 |
- Total
- Today
- Yesterday
- Pose2Mesh
- 에디톨로지
- 컴퓨터비젼
- 2d pose
- Docker
- Machine Learning
- camera coordinate
- spin
- part segmentation
- Interview
- densepose
- Virtual Camera
- 헬스
- 컴퓨터비전
- 머신러닝
- VAE
- Transformation
- demo
- world coordinate
- 인터뷰
- 비전
- 피트니스
- nohup
- pyrender
- pytorch
- nerf
- focal length
- Generative model
- deep learning
- 문경식
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |