
And solving the linear equation system when the system matrix is a triangular matrix is very efficient!# Normal equations:(J^TJ)x = J^Ty# This is exactly our Ax = b where:A = J^TJ # symmetric positive definite!b = J^Ty# Solve using Cholesky:A = LL^T # Cholesky decompositionLy = b # Forward substitutionL^Tx = y # Backward substitution # For n×n system:General matrix: O(n³) # Using Gaussian elimin..
Research (연구 관련)
2025. 2. 17. 12:06
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- demo
- densepose
- Interview
- 비전
- pyrender
- 머신러닝
- 문경식
- 피트니스
- VAE
- 에디톨로지
- Generative model
- 2d pose
- nerf
- 컴퓨터비전
- nohup
- world coordinate
- Transformation
- 헬스
- Machine Learning
- part segmentation
- camera coordinate
- deep learning
- Virtual Camera
- Docker
- 컴퓨터비젼
- pytorch
- focal length
- Pose2Mesh
- spin
- 인터뷰
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
글 보관함