티스토리 뷰
And solving the linear equation system when the system matrix is a triangular matrix is very efficient!
# Normal equations:
(J^TJ)x = J^Ty
# This is exactly our Ax = b where:
A = J^TJ # symmetric positive definite!
b = J^Ty
# Solve using Cholesky:
A = LL^T # Cholesky decomposition
Ly = b # Forward substitution
L^Tx = y # Backward substitution
# For n×n system:
General matrix: O(n³) # Using Gaussian elimination
Triangular matrix: O(n²) # Using forward/backward substitution
So why is it a bad idea to do Gaussian Newton to optimize a neural network instead of gradient descent? When should and should not I use Gaussian Newton?
'Research (연구 관련)' 카테고리의 다른 글
Inference-Time Techniques for LLM Reasoning (0) | 2025.02.03 |
---|---|
Dual Contouring (0) | 2025.01.17 |
Generative AI - Diffusion / Lecture 1 (0) | 2024.11.27 |
Transformer / Large models (0) | 2024.11.25 |
mmcv installation (0) | 2024.10.21 |
공지사항
최근에 올라온 글
최근에 달린 댓글
- Total
- Today
- Yesterday
링크
TAG
- Machine Learning
- 비전
- pytorch
- Pose2Mesh
- 머신러닝
- VAE
- part segmentation
- 인터뷰
- 에디톨로지
- focal length
- 2d pose
- Generative model
- Virtual Camera
- Transformation
- demo
- 컴퓨터비젼
- Interview
- world coordinate
- spin
- Docker
- densepose
- nerf
- 문경식
- 컴퓨터비전
- 헬스
- camera coordinate
- nohup
- deep learning
- 피트니스
- pyrender
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
글 보관함