티스토리 뷰

And solving the linear equation system when the system matrix is a triangular matrix is very efficient!

# Normal equations:
(J^TJ)x = J^Ty

# This is exactly our Ax = b where:
A = J^TJ # symmetric positive definite!
b = J^Ty

# Solve using Cholesky:
A = LL^T # Cholesky decomposition
Ly = b # Forward substitution
L^Tx = y # Backward substitution
 
# For n×n system:
General matrix: O(n³) # Using Gaussian elimination
Triangular matrix: O(n²) # Using forward/backward substitution
 

So why is it a bad idea to do Gaussian Newton to optimize a neural network instead of gradient descent? When should and should not I use Gaussian Newton?

'Research (연구 관련)' 카테고리의 다른 글

Inference-Time Techniques for LLM Reasoning  (0) 2025.02.03
Dual Contouring  (0) 2025.01.17
Generative AI - Diffusion / Lecture 1  (0) 2024.11.27
Transformer / Large models  (0) 2024.11.25
mmcv installation  (0) 2024.10.21
공지사항
최근에 올라온 글
최근에 달린 댓글
Total
Today
Yesterday
링크
«   2025/02   »
1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28
글 보관함