![](http://i1.daumcdn.net/thumb/C148x148.fwebp.q85/?fname=https://blog.kakaocdn.net/dn/b41FNQ/btsFobtbyk4/XKoyVxJbGD7FXIRtayI8A1/img.png)
•What is the appropriate and differentiable norm when given data points with outliers? (median is not differentiable) •How do you define outliers? What is the probabilistic meaning of outliers? 첫 번째 질문의 답이 p-norm with high p였던 거 같아서 p-norm, 2-norm, frobenius norm을 찾아보다가 svd, eigenvalue decomposition을 찾아보다 왜 p-norm with high p인 지 아직도 이해를 못함. 일단 induced norm 인가 schatten norm인 지 모르겠음. https://chris..
![](http://i1.daumcdn.net/thumb/C148x148.fwebp.q85/?fname=https://blog.kakaocdn.net/dn/bC6tef/btsFm7YJ987/tJ9xZFXLmzVS8TA47KzCS0/img.png)
09.18.2024Gradient Penalty라고도 불리나 봄. Applying a gradient penalty in GAN training (especially in WGAN-GP) helps stabilize the training process by enforcing the Lipschitz continuity condition. This regularizes the discriminator’s gradients, ensuring that they remain well-behaved, which in turn helps the generator receive more meaningful updates. It addresses critical issues like mode collapse, van..
![](http://i1.daumcdn.net/thumb/C148x148.fwebp.q85/?fname=https://blog.kakaocdn.net/dn/AviBq/btsFgPeBvra/ydQpbTqoG0OJzb6AVixeGK/img.png)
Signal Processing in Computer Vision 복습. 카메라 팀에서는 이게 기본이구나. Radiometry, Stereo Depth 물어볼 줄 알았었는데. 아니었음. 이 짱짱 교수님 강의 정리해봄: https://www.youtube.com/watch?v=m_11ntjkn4k&list=PL2zRqk16wsdorCSZ5GWZQr1EMWXs2TDeu&index=8 Fourier Transform. Do you know Fourier Transform? What are the properties of Fourier Transform? If you have a periodic function, it can be expressed as a sum of sinusoids without loss ..
- Total
- Today
- Yesterday
- part segmentation
- world coordinate
- densepose
- camera coordinate
- 헬스
- Generative model
- 머신러닝
- 비전
- VAE
- nerf
- spin
- 2d pose
- Virtual Camera
- 문경식
- pytorch
- Pose2Mesh
- Docker
- nohup
- Machine Learning
- focal length
- 에디톨로지
- Transformation
- 컴퓨터비젼
- 피트니스
- demo
- pyrender
- 인터뷰
- 컴퓨터비전
- deep learning
- Interview
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 |