![](http://i1.daumcdn.net/thumb/C148x148.fwebp.q85/?fname=https://blog.kakaocdn.net/dn/b41FNQ/btsFobtbyk4/XKoyVxJbGD7FXIRtayI8A1/img.png)
•What is the appropriate and differentiable norm when given data points with outliers? (median is not differentiable) •How do you define outliers? What is the probabilistic meaning of outliers? 첫 번째 질문의 답이 p-norm with high p였던 거 같아서 p-norm, 2-norm, frobenius norm을 찾아보다가 svd, eigenvalue decomposition을 찾아보다 왜 p-norm with high p인 지 아직도 이해를 못함. 일단 induced norm 인가 schatten norm인 지 모르겠음. https://chris..
![](http://i1.daumcdn.net/thumb/C148x148.fwebp.q85/?fname=https://blog.kakaocdn.net/dn/bC6tef/btsFm7YJ987/tJ9xZFXLmzVS8TA47KzCS0/img.png)
09.18.2024Gradient Penalty라고도 불리나 봄. Applying a gradient penalty in GAN training (especially in WGAN-GP) helps stabilize the training process by enforcing the Lipschitz continuity condition. This regularizes the discriminator’s gradients, ensuring that they remain well-behaved, which in turn helps the generator receive more meaningful updates. It addresses critical issues like mode collapse, van..
![](http://i1.daumcdn.net/thumb/C148x148.fwebp.q85/?fname=https://blog.kakaocdn.net/dn/AviBq/btsFgPeBvra/ydQpbTqoG0OJzb6AVixeGK/img.png)
Signal Processing in Computer Vision 복습. 카메라 팀에서는 이게 기본이구나. Radiometry, Stereo Depth 물어볼 줄 알았었는데. 아니었음. 이 짱짱 교수님 강의 정리해봄: https://www.youtube.com/watch?v=m_11ntjkn4k&list=PL2zRqk16wsdorCSZ5GWZQr1EMWXs2TDeu&index=8 Fourier Transform. Do you know Fourier Transform? What are the properties of Fourier Transform? If you have a periodic function, it can be expressed as a sum of sinusoids without loss ..
![](http://i1.daumcdn.net/thumb/C148x148.fwebp.q85/?fname=https://blog.kakaocdn.net/dn/cBQwV5/btsFbvNTPSd/Vk6KQTyMxv756jfvf9bV30/img.png)
Stereo Depth Estimation 복습하다 feature matching파트에서 pixel level matching이 힘든 이유로 non-lambertian 인 경우가 있어서 lambertian과 specular reflection을 복습해봤다. (foreshorteningd, noise도 있는데 foreshorening은 region matching이나 object matching에서 더 문제 아닌가 싶음) 그리고 NeRF가 왜 좋은지, 즉 어떻게 non-lambertian refelecting surface를 modeling할 수 있는 지 공부하겠다. Stereo Depth Estimation: 1. Calibrate cameras: get extrinsics and intrinsics -..
![](http://i1.daumcdn.net/thumb/C148x148.fwebp.q85/?fname=https://blog.kakaocdn.net/dn/cICaBh/btsE2Bsqr2g/TDsSghdm7kGhOKKe3ZLbhk/img.png)
rasterization code 쓸 때랑, sparse conv api 이해/설치하려고 할 때, bundle adjustment를 cuda로 짤수 있지 않을까 생각해봤을 때 (결국 안함.) CUDA를 접한 적이 있고, 여전히 솔직히 잘 모르겠어서 처음부터 정리해보려고 함. (02/18/2024) 아니 직접적으로는 웨이모 인터뷰 질문을 글래스도어에서 찾아보다가 What does thread mean for GPU? 라는 걸 보고, 흠 뭐라고 대답해야하지 라고 생각하다 이 영상 보고 정리해보기로 함. Intro to CUDA (part 1) https://www.youtube.com/watch?v=4APkMJdiudU - GPU > CPU: tremendous computational throughput ..
![](http://i1.daumcdn.net/thumb/C148x148.fwebp.q85/?fname=https://blog.kakaocdn.net/dn/c8wjh3/btsEFPyJ1Qj/sJmByRMe9UtgfCISErejj0/img.png)
virtual viewpoint를 활용한 ordinal loss https://arxiv.org/pdf/2304.11970.pdf equation (7) 수식이 뭔가 잘못되어서 찾아보니 그냥 틀린거임. https://arxiv.org/pdf/1805.04095.pdf 실제 구현은 이러함 https://github.com/zerchen/gSDF/blob/master/common/loss/ordinal_loss.py#L145 참고: https://www.vedantu.com/question-answer/does-a-dot-product-equal-to-one-mean-class-11-physics-cbse-610cb4854d5f1d00a97380e8 What does a dot product equal to..
Download large google drive files Gdown is too unreliable - sudden stop after an hour, "too frequent xxxx", ... This seems to work; (Update 02/10/2024) This also fails since the token expires in an hour :( https://www.quora.com/How-do-I-download-a-very-large-file-from-Google-Drive How do I download a very large file from Google Drive? Answer (1 of 14): If you're looking for a quick and easy way ..
What is field of view? https://www.digitalcameraworld.com/tutorials/photography-cheat-sheet-what-is-field-of-view-fov Photography cheat sheet: What is Field of View (FoV)? Understand Field of view in photography and how it relates to the focal length of the lens and the sensor size – the diagram below shows you more www.digitalcameraworld.com FOV, focal length, sensor size https://www.e-consyste..
- Total
- Today
- Yesterday
- world coordinate
- Pose2Mesh
- Docker
- Interview
- deep learning
- demo
- 헬스
- Generative model
- Machine Learning
- 인터뷰
- 비전
- spin
- 머신러닝
- focal length
- Transformation
- 문경식
- nerf
- Virtual Camera
- nohup
- densepose
- 에디톨로지
- 컴퓨터비전
- 피트니스
- 2d pose
- pyrender
- pytorch
- camera coordinate
- 컴퓨터비젼
- part segmentation
- VAE
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 |